2012/13 DROWNING REPORT
Methods 2
Our Performance 3
CEO’s Report 6
Who Is Drowning? 8
When, Where, What 12
Contributing Factors 15
Coronial Recommendations 16
Key Water Safety Agencies and Organisations 18
References 18

SUGGESTED CITATION

Acknowledges the assistance of the Life Saving Victoria gratefully

ACKNOWLEDGEMENTS

COMPILED BY

Dr Bernadette Matthews BSc, MAppSc, PhD
Manager Research & Injury Prevention, Life Saving Victoria

During her time at Life Saving Victoria, Dr Matthews has managed numerous aquatic injury prevention projects, from epidemiology of fatal and non-fatal drowning, aquatic safety signage recognition and recall, injuries in public swimming pools, volunteer member recruitment, through to evaluation of education programs and major public awareness and multicultural campaigns.

Robert Andronaco BA (Recreation Mgt), MA (Rec and Sport Mgt), GradDip (Risk Mgt), Manager Risk and GIS Development, Life Saving Victoria

In his role at Life Saving Victoria, Robert focuses on quantifying drowning risk and assisting land managers in mitigating assessed risks specific to recreational drowning and injury. Robert uses both traditional statistical approaches and spatial statistical analysis approaches in quantifying drowning risks. Robert is a current PhD candidate at RMIT University’s School of Mathematics and Geospatial Science.

SUGGESTED CITATION

METHODS

This report includes unintentional fatal and non-fatal drowning incidents reported in Victoria, Australia. An overview of fatal drowning for 1 July 2012 to 30 June 2013 is provided and compared with non-fatal drowning incidents for the same period. The 5 and 10 year averages were calculated from fatal and non-fatal drowning data in Victoria from 1 July 2002 to 30 June 2012.

Fatal incidents

Information on fatal drowning incidents was collected from the Coroners Court of Victoria, and the National Coroners Information System (NCIS). Deaths due to natural causes, suicide, or homicide are excluded from this report.

Coronial information relates to both open and closed cases. While all care is taken to ensure that the results are as accurate as possible, these figures are provisional only, coronal investigations and findings relating to open cases may alter the reported drowning figures. At the time of compilation all suspected unintentional drowning cases in 2012/2013 remained open on the NCIS.

Coronial information relates to both open and closed cases. While all care is taken to ensure that the results are as accurate as possible, these figures are provisional only, coronal investigations and findings relating to open cases may alter the reported drowning figures. At the time of compilation all suspected unintentional drowning cases in 2012/2013 remained open on the NCIS.

Information on non-fatal drowning in 2012/2013 was provided by Ambulance Victoria (AV). Cases of non-fatal and immersion related injuries attended by AV paramedics were extracted from the VACAR clinical information system. Potential drowning data for this report was identified via a database search for all drowning related dispatch codes identified at the emergency call-taker level, as well as cases in which paramedics reported a final assessment of ‘post immersion’.

Only patients reported as suffering respiratory compromise or vomiting as a result of immersion were included in analyses. Hospital discharge data from the Victorian Ambulance Cardiac Arrest Registry (VACAR), a registry capturing all out-of-hospital cardiac arrest (OHCA) cases attended by ambulance paramedics in Victoria, was also used to ensure complete identification of non-fatal drowning.

Information on non-fatal drowning from 2002 to 2012 was provided by the Victorian Injury Surveillance Unit (VISU) and the Victorian Emergency Minimum Dataset (VEMD). Visited patients reported all cases attended by ambulance paramedics in Victoria. Data included non-fatal and immersion-related injuries, extracted from the Victorian Emergency Minimum Dataset (VEMD) and Victorian Admitted Episodes Dataset (VAED) cases attended by ambulance paramedics in Victoria, was also used to ensure complete identification of non-fatal drowning.

Information on non-fatal drowning from 2002 to 2012 was provided by the Victorian Injury Surveillance Unit (VISU) and the Victorian Emergency Minimum Dataset (VEMD). Visited patients reported all cases attended by ambulance paramedics in Victoria. Data included non-fatal and immersion-related injuries, extracted from the Victorian Emergency Minimum Dataset (VEMD) and Victorian Admitted Episodes Dataset (VAED) cases attended by ambulance paramedics in Victoria, was also used to ensure complete identification of non-fatal drowning.

Non-fatal incidents

Information on non-fatal drowning in 2012/2013 was provided by Ambulance Victoria (AV). Cases of non-fatal and immersion related injuries attended by AV paramedics were extracted from the VACAR clinical information system. Potential drowning data for this report was identified via a database search for all drowning related dispatch codes identified at the emergency call-taker level, as well as cases in which paramedics reported a final assessment of ‘post immersion’.

Only patients reported as suffering respiratory compromise or vomiting as a result of immersion were included in analyses. Hospital discharge data from the Victorian Ambulance Cardiac Arrest Registry (VACAR), a registry capturing all out-of-hospital cardiac arrest (OHCA) cases attended by ambulance paramedics in Victoria, was also used to ensure complete identification of non-fatal drowning.

Information on non-fatal drowning from 2002 to 2012 was provided by the Victorian Injury Surveillance Unit (VISU) and the Victorian Emergency Minimum Dataset (VEMD). Visited patients reported all cases attended by ambulance paramedics in Victoria. Data included non-fatal and immersion-related injuries, extracted from the Victorian Emergency Minimum Dataset (VEMD) and Victorian Admitted Episodes Dataset (VAED) cases attended by ambulance paramedics in Victoria, was also used to ensure complete identification of non-fatal drowning.

Information on non-fatal drowning from 2002 to 2012 was provided by the Victorian Injury Surveillance Unit (VISU) and the Victorian Emergency Minimum Dataset (VEMD). Visited patients reported all cases attended by ambulance paramedics in Victoria. Data included non-fatal and immersion-related injuries, extracted from the Victorian Emergency Minimum Dataset (VEMD) and Victorian Admitted Episodes Dataset (VAED) cases attended by ambulance paramedics in Victoria, was also used to ensure complete identification of non-fatal drowning.

Non-fatal incidents

Information on non-fatal drowning in 2012/2013 was provided by Ambulance Victoria (AV). Cases of non-fatal and immersion related injuries attended by AV paramedics were extracted from the VACAR clinical information system. Potential drowning data for this report was identified via a database search for all drowning related dispatch codes identified at the emergency call-taker level, as well as cases in which paramedics reported a final assessment of ‘post immersion’.

Only patients reported as suffering respiratory compromise or vomiting as a result of immersion were included in analyses. Hospital discharge data from the Victorian Ambulance Cardiac Arrest Registry (VACAR), a registry capturing all out-of-hospital cardiac arrest (OHCA) cases attended by ambulance paramedics in Victoria, was also used to ensure complete identification of non-fatal drowning.

Information on non-fatal drowning from 2002 to 2012 was provided by the Victorian Injury Surveillance Unit (VISU) and the Victorian Emergency Minimum Dataset (VEMD). Visited patients reported all cases attended by ambulance paramedics in Victoria. Data included non-fatal and immersion-related injuries, extracted from the Victorian Emergency Minimum Dataset (VEMD) and Victorian Admitted Episodes Dataset (VAED) cases attended by ambulance paramedics in Victoria, was also used to ensure complete identification of non-fatal drowning.

Non-fatal incidents

Information on non-fatal drowning in 2012/2013 was provided by Ambulance Victoria (AV). Cases of non-fatal and immersion related injuries attended by AV paramedics were extracted from the VACAR clinical information system. Potential drowning data for this report was identified via a database search for all drowning related dispatch codes identified at the emergency call-taker level, as well as cases in which paramedics reported a final assessment of ‘post immersion’.

Only patients reported as suffering respiratory compromise or vomiting as a result of immersion were included in analyses. Hospital discharge data from the Victorian Ambulance Cardiac Arrest Registry (VACAR), a registry capturing all out-of-hospital cardiac arrest (OHCA) cases attended by ambulance paramedics in Victoria, was also used to ensure complete identification of non-fatal drowning.

Information on non-fatal drowning from 2002 to 2012 was provided by the Victorian Injury Surveillance Unit (VISU) and the Victorian Emergency Minimum Dataset (VEMD). Visited patients reported all cases attended by ambulance paramedics in Victoria. Data included non-fatal and immersion-related injuries, extracted from the Victorian Emergency Minimum Dataset (VEMD) and Victorian Admitted Episodes Dataset (VAED) cases attended by ambulance paramedics in Victoria, was also used to ensure complete identification of non-fatal drowning.

Information on non-fatal drowning from 2002 to 2012 was provided by the Victorian Injury Surveillance Unit (VISU) and the Victorian Emergency Minimum Dataset (VEMD). Visited patients reported all cases attended by ambulance paramedics in Victoria. Data included non-fatal and immersion-related injuries, extracted from the Victorian Emergency Minimum Dataset (VEMD) and Victorian Admitted Episodes Dataset (VAED) cases attended by ambulance paramedics in Victoria, was also used to ensure complete identification of non-fatal drowning.

Non-fatal incidents

Information on non-fatal drowning in 2012/2013 was provided by Ambulance Victoria (AV). Cases of non-fatal and immersion related injuries attended by AV paramedics were extracted from the VACAR clinical information system. Potential drowning data for this report was identified via a database search for all drowning related dispatch codes identified at the emergency call-taker level, as well as cases in which paramedics reported a final assessment of ‘post immersion’.

Only patients reported as suffering respiratory compromise or vomiting as a result of immersion were included in analyses. Hospital discharge data from the Victorian Ambulance Cardiac Arrest Registry (VACAR), a registry capturing all out-of-hospital cardiac arrest (OHCA) cases attended by ambulance paramedics in Victoria, was also used to ensure complete identification of non-fatal drowning.

Information on non-fatal drowning from 2002 to 2012 was provided by the Victorian Injury Surveillance Unit (VISU) and the Victorian Emergency Minimum Dataset (VEMD). Visited patients reported all cases attended by ambulance paramedics in Victoria. Data included non-fatal and immersion-related injuries, extracted from the Victorian Emergency Minimum Dataset (VEMD) and Victorian Admitted Episodes Dataset (VAED) cases attended by ambulance paramedics in Victoria, was also used to ensure complete identification of non-fatal drowning.

Information on non-fatal drowning from 2002 to 2012 was provided by the Victorian Injury Surveillance Unit (VISU) and the Victorian Emergency Minimum Dataset (VEMD). Visited patients reported all cases attended by ambulance paramedics in Victoria. Data included non-fatal and immersion-related injuries, extracted from the Victorian Emergency Minimum Dataset (VEMD) and Victorian Admitted Episodes Dataset (VAED) cases attended by ambulance paramedics in Victoria, was also used to ensure complete identification of non-fatal drowning.

Information on non-fatal drowning from 2002 to 2012 was provided by the Victorian Injury Surveillance Unit (VISU) and the Victorian Emergency Minimum Dataset (VEMD). Visited patients reported all cases attended by ambulance paramedics in Victoria. Data included non-fatal and immersion-related injuries, extracted from the Victorian Emergency Minimum Dataset (VEMD) and Victorian Admitted Episodes Dataset (VAED) cases attended by ambulance paramedics in Victoria, was also used to ensure complete identification of non-fatal drowning.

Excess risk maps

Excess risk maps were created to illustrate the degree to which drowning rates are greater than or less than the average observed risk at differing locations (this is also called standard mortality rates). The maps were based on frequency counts of drowning incident postcode and drowning victim residence postcode, grouped by Victorian Local Government Areas (LGAs). These maps do not provide information about whether excess rates are statistically significant, rather they are based on ratios of actual to expected counts of events by the population at risk.
Every day, visitors to Victoria’s 811 kilometres of ocean beaches, 259 kilometres of bay beaches, 85,000 kilometres of rivers, 13,000 natural wetlands and 450 public and commercial swimming pools, engage in a wide variety of recreational aquatic activities (Short, 1996; DSE, 2011; VAIC, 2001). Our prevention efforts span this setting.

OUR PERFORMANCE

REDUCE DROWNING
Reduce Victorian drowning rate

- **41** Drowning deaths in Victoria in 2012/2013, an increase of 4 deaths compared to 2011/2012.
- **89** Non-fatal drowning incidents in Victoria in 2012/2013.
- **0.72** Crude drowning death rate per 100,000 persons in Victoria in 2012/2013.
- **1.56** Crude hospitalisation rate of non-fatal drowning victims per 100,000 persons in Victoria in 2012/2013.
- **48%** Decrease in the drowning rate in Victoria since the start of the Play it Safe by the Water (PISBTW) campaign in 1998.

SERVICES
Expand to meet public need/ sustainability/ membership development, growth and support

- **809** Rescues by lifesavers and lifeguards on patrolled beaches on average per year from 2002-2012.
- **1,872** First aid assistance by lifesavers and lifeguards on patrolled beaches on average per year from 2002-2012.
- **28,463** Volunteer members in 2012/2013, patrolling our beaches and providing education and training in lifesaving activities, to ensure the safety of the Victoria’s waterway users.
- **5,590** Training courses completed by lifesavers in order to update or advance their qualifications in 2012/2013.
- **$235M** Estimated total value of lifesaving services in Victoria per year (PWC, 2011).

EDUCATION & TRAINING
Continue development to ensure efficiency and expansion of delivery

- **189,807** Participants took part in LSV water safety education programs state wide in 2012/2013; a 10% increase compared to 5 year average (2007-2012).
- **10,360** Culturally and linguistically diverse participants took part in LSV programs in 2012/2013; a 11% increase compared to the 5 year average (2007-2012).
- **29,614** People trained in CPR or participated in Child and Infant CPR or other First Aid related courses run by LSV in 2012/2013; a 29% increase compared to the 5 year average (2007-2012).
- **4,040** Pool Lifeguard participants in LSV courses in 2012/2013; an increase of 14% compared to the 5 year average (2007-2012).
- **124** Aquatic facilities are registered Watch Around Water facilities in 2012/2013.

AQUATIC RISK & RESEARCH
Striving for excellence through evidence based practice

- **24,000** Children estimated to be leaving primary school each year unable to swim 50 metres or more of a standard swimming pool, based on parent estimates (Birch et al, 2013).
- **68%** Teachers surveyed believed that the swimming ability of the Year 6 students in their class who were born outside Australia was below that of an ‘average swimmer’ (Birch et al, 2013).
- **45%** Beachgoers surveyed reported observing any signage at selected Victorian beaches (Matthews et al, 2014).
- **80** Aquatic facility safety assessments conducted in 2012/2013 to audit aquatic locations against the best practice standards.
- **44%** Aquatic facilities have not completed an aquatic facility safety assessment in the past five years.

KEY LIFE STAGES

<table>
<thead>
<tr>
<th>Key Life Stages</th>
<th>Baseline 3 Year Average (2004-2007)</th>
<th>Follow-Up 3 Year Average (2010-2013)</th>
<th>Progress</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children 0-4 years</td>
<td>3</td>
<td>2</td>
<td>Work needed</td>
</tr>
<tr>
<td>Children 5-14 years</td>
<td>4</td>
<td>2</td>
<td>Work needed</td>
</tr>
<tr>
<td>Young people 15-24 years</td>
<td>5</td>
<td>5</td>
<td>Work needed</td>
</tr>
<tr>
<td>People aged over 55 years</td>
<td>13</td>
<td>10</td>
<td>Work needed</td>
</tr>
</tbody>
</table>

HIGH RISK LOCATIONS

<table>
<thead>
<tr>
<th>High Risk Locations</th>
<th>Baseline 3 Year Average (2004-2007)</th>
<th>Follow-Up 3 Year Average (2010-2013)</th>
<th>Progress</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural and remote</td>
<td>23</td>
<td>18</td>
<td>Work needed</td>
</tr>
<tr>
<td>Inland waterways</td>
<td>15</td>
<td>14</td>
<td>Work needed</td>
</tr>
<tr>
<td>Coastal waterways</td>
<td>14</td>
<td>15</td>
<td>Urgent work needed</td>
</tr>
</tbody>
</table>

Average from 2000-2008
Forty-one people drowned in Victoria this year, which represents our highest drowning toll since 2004/2005. The increase in drowning deaths again this year is a tragic warning to all to remain vigilant when it comes to water safety.

A key feature of this year’s report is the inclusion of non-fatal drowning statistics from Ambulance Victoria (AV) for 2012/2013 which, along with statistics from the Victorian Injury Surveillance Unit (VISU) over the previous 10 years, provides a more detailed picture of drowning trends.

This data, combined with fatal drowning data, reveals that there were 130 fatal and non-fatal drowning incidents in Victoria from 2002-2012. Therefore on average, there are 150 drowning deaths or hospitalisations each year in Victoria, or, for every drowning death there are another three people hospitalised due to drowning.

Key issues highlighted by this year’s report include:

- A 65% increase in the drowning rate of those aged over 60 years, compared to the average over the previous 10 years (2002-2012). This represents the highest age-specific drowning death rate by population in Victoria.
- An increase in the number of people from culturally and linguistically diverse (CALD) communities who drowned in 2012/2013, representing 22% of the total drowning deaths.
- Despite our prevention efforts, which have seen a decrease in drowning along Victoria’s coast over recent years, this year saw a converse trend with a 52% increase in coastal drowning deaths, compared with the average over the past decade. All coastal drowning deaths occurred at beaches that were not patrolled by lifesavers.
- Alcohol continues to be an issue, with nine drowning deaths this year whereby alcohol was reportedly consumed by the individual prior to drowning. Alcohol-related deaths represent one in four drowning deaths in Victoria over the past decade.
- Unintentional water entries (slips/trips/falls) over the past decade accounted for 40% of fatal drowning incidents.

The good news this year was that there were zero drowning deaths in the 5-14 year age group. This is a positive result and alongside the 38% decrease in drowning in inland waterways this year, compared with the average over the past decade, may reflect the effectiveness of our current programs targeting school children in regional Victoria.

This year’s report also includes map representations of the Victorian fatal drowning trend from 2002-2012, highlighting key areas of risk.

Nigel Taylor
Chief Executive Officer,
Life Saving Victoria

I present Life Saving Victoria’s Drowning Report for 2012/2013 with the reminder that every drowning death is one too many. It is our mission to prevent aquatic related death and injury in all Victorian communities by ongoing engagement with industry, Government and the community to develop innovative solutions.

I remind all Victorians to take ownership of their own personal safety as well as those in their care; be aware of the potential dangers in the water and prepare by putting safety first when in, on or around water.
There were 130 drowning incidents in Victoria in 2012/2013, including 41 fatal and 89 non-fatal drowning incidents. From 2002-2012 there were 1,497 drowning incidents, with an average of 150 each year. For every drowning death there are another three non-fatal drowning incidents. This year, the crude fatal drowning rate was 0.74 per 100,000 persons with the crude hospitalisation rate of 2.12 per 100,000 persons.

GENDER

Males are consistently overrepresented in drowning statistics. Of the 41 drowning deaths in Victoria in 2012/13, 32 (78%) were male. While males were still overrepresented, the gender difference was slightly less with respect to non-fatal drowning; 60 (67%) males hospitalised in 2012/2013 and on average 76 (69%) hospitalised from 2002-2012.

AGE

Adults aged over 60 years had the highest age-specific fatal drowning rate in 2012/2013 (15 or 1.35 per 100,000 persons), followed by children aged 0-4 years (3 or 0.84 per 100,000 persons). This has been consistent over the past decade, in which these two age groups have maintained the highest fatal drowning rates.

There was a decrease in the fatal drowning rate per 100,000 persons across all age groups in 2012/2013 compared with the 10 year average (2002-2012), except those aged over 60 years, which increased by 65% (1.35 in 2012/2013 compared with 0.82 from 2002-2012). The inverse was found in non-fatal drowning rates with the highest rate in children 0-4 years (12.24, 2012/2013) and decreasing with age.

The high non-fatal drowning rate in 0-4 year olds in 2012/2013 was mirrored by the prevalence of drowning incidents in swimming pools and bathtubs in this age group.

Swimming pools were the most common location of non-fatal drowning for children aged 0-4 years (62%; comprising 17, 29% in private pools and 10, 23% in public pools), followed by bathtubs/spa baths (9, 20%). This trend was also reflected in the past decade of hospitalisations with 42% in swimming pools and 23% in bathtubs/spa baths.

Children aged 0-4 years remain at greatest overall risk of drowning with the highest age-specific rate of fatal and non-fatal drowning, 11.85 per 100,000 (2002-2012) followed by 2.93 for 15-24 year olds and 2.90 for 5-14 year olds.

CULTURAL AND LINGUISTIC DIVERSITY

This year 9 (22%) people who drowned were reported as being from culturally and linguistically diverse (CALD) communities, almost double the average of 5 (14%) from the previous decade (2002-2012). These figures are likely to be higher as from 2002-2012 country of birth or ethnicity were unknown in 3 out of 4 drowning deaths (country of birth was unable to be determined for non-fatal drowning incidents).

Individuals from a CALD background are recognised as those who identify as "having a specific cultural or linguistic affiliation by virtue of their place of birth, ancestry, ethnic origin, religion, preferred language, language(s) spoken at home, or because of their parents’ identification on a similar basis." (DHSMSU, 2002)

A review of cases from 2002-2012 involving individuals from CALD communities revealed that the majority were male (82%); aged 15-24 years (25%) or 35-59 years (32%). Incidents typically occurred in open waterways; with almost two thirds in coastal waterways (64%) and almost one third in inland waterways (29%). Common activities the victims were undertaking prior to the drowning incident included swimming (29%), rock fishing/rock walking (21%), walking or recreating near water (16%), or attempting a rescue (13%). In over a third of incidents (37%) the victim did not intend to enter the water, they slipped or fell in.
PEOPLE IN REGIONAL AREAS REMAIN 1.5 TIMES MORE LIKELY TO DROWN THAN THOSE IN MAJOR CITIES.
INCREASE IN DROWNING DEATHS IN COASTAL WATERWAYS THIS YEAR.

WHEN, WHERE, WHAT

WHEN DID THEY DROWN?

Month
The highest number of drowning deaths occurred in February and March 2012/2013, with seven and eight drowning deaths respectively. This is the highest number of drowning deaths recorded in these months in over a decade.

On Saturday 9 March, the Labour Day long weekend took a tragic turn, with three separate drowning deaths in one day. This was amidst a record breaking heatwave, which affected southeast Australia and in particular Melbourne, with a record nine consecutive days above 30°C (Bureau of Meteorology, 2013).

Season
Drowning incidents occur all year round. Over the past decade (2002-2012) the majority of drowning incidents occurred in summer (37%), followed by spring (24%), autumn (21%) and winter (18%). Summer was also the peak season for non-fatal drowning incidents in 2012/2013 (52, 58%), however the majority of fatal drowning incidents in 2012/2013 occurred in autumn (16, 39%).

WHERE DID THEY DROWN?

Region - Place of occurrence
Just over half of drowning fatalities in 2012/2013 occurred in metropolitan regions (22, 54%). This is in line with the more recent trend for drowning incidents occurring in metropolitan regions (52% from 2007-2012) and differs from the previous five year period where the majority of incidents occurred in regional Victoria (61%, 2002-2007).

Region - Place of residence
Similar to the region of incident, just over half of those who drowned in Victoria in 2012/2013 resided in major cities in Victoria (21, 51%). However, when accounting for the differences in the distribution of the population, the drowning rate per 100,000 persons was greater for those residing in regional Victoria. While the drowning rate in regional Victoria has decreased over the years (average 0.85 from 2002-2007 to average 0.63 from 2007-2012), those in regional and remote areas remain 1.5 times more likely to drown than those in major cities in Victoria.

Waterways
The majority of drowning deaths occurred in coastal waterways in 2012/2013 (23, 56%). This represents a 52% increase in coastal drowning deaths compared with the average over the past decade 2002-2012.

On a positive note, there was a decrease in the number of drowning deaths in inland waterways in 2012/2013 with 9 (22%) compared to an average of 15 per year from 2002-2012 (38%).

Non-fatal incidents in open waterways in 2012/2013 were also more likely to occur in coastal environments (23, 26%) compared to inland waterways (9, 10%). However, the most common locations for non-fatal drowning in 2012/2013 were in swimming pools (51%), including both private pools (23, 26%) and public pools (22, 25%).

THE MAJORITY OF DROWNING DEATHS OCCURRED IN COASTAL WATERWAYS IN 2012/2013
WHAT WERE THEY DOING?

Activity

Various recreational activities were being undertaken immediately prior to fatal drowning incidents in 2012/2013. These included swimming, paddling or wading (7, 17%), followed by walking or playing near water (5, 12%), boating (5, 12%), diving/skin diving (includes snorkelling and SCUBA diving; 4, 10%) and other activities including fishing, attempting a rescue and bathing.

In a large proportion of cases the activity prior to drowning was unknown (11, 24%). This is due to the person being on their own at the time of the incident and reinforces the need to look out for yourself and others around water.

Activities with an increased number of drowning deaths compared to the previous 10 year average (2002-2012) included fishing (up by 3), diving/skin diving (up by 2), attempting a rescue (up by 2).

Fatal boating incidents were again higher this year, with five fatalities compared to the average of three deaths per year from 2006-2012, since the introduction of mandatory wearing of lifejackets (personal flotation devices, PFDs) for recreational boaters in December 2005.

The average prior to this safety initiative (from 2000-2006) was nine drowning deaths.

There were no rock fishing drowning deaths this year, which is a positive sign and hopefully reflects LSV’s ongoing Rock Fishing Safety campaign, promoting rock fishing safety particularly throughout CALD communities.

A review of fatal drowning deaths over the past decade (2002-2012) also revealed that in many cases (40%) the person was not intending to enter the water, they slipped or fell in.

Over half of non-fatal drowning incidents in 2012/2013 occurred when the individual was swimming, (52, 55%). This reflects the high proportion of non-fatal drowning incidents occurring in swimming pools.

Over the past 10 years, from 2002-2012, the specific activity prior to the incident occurring was only known in just over half of the hospital admissions (522, 53%). Of these 522 incidents, a similar pattern to fatal drowning was found. Swimming was again the most common activity, accounting for 24% of hospital admissions. Other common activities included general leisure activities (18%), boating (11%) and individual water sports/craft riding (12%).
CONTRIBUTING FACTORS

ALCOHOL-RELATED DROWNING DEATHS

Tragically, another nine lives were lost in 2012/2013 when an individual reportedly consumed alcohol prior to drowning, representing 22% of the total drowning toll. This is consistent with the past decade, with nine deaths each year related to alcohol consumption (2002-2012), representing on average one in four drowning deaths.

The characteristics of drowning incidents where alcohol was reportedly involved were similar to previously reported trends in that the majority involved males (88.5%), and involved similar age groups, with those aged 25-59 highest represented (Mathews et al, 2011).

The place of occurrence of alcohol-related drowning incidents in 2012/2013 was evenly divided, with a third each in inland waterways, coastal waterways and the home environment.

PEOPLE THAT DROWNED IN BOATING INCIDENTS NOT WEARING A LIFEJACKET AT THE TIME THE INCIDENT OCCURRED

3-IN-4

22% OF LIVES LOST WHEN AN INDIVIDUAL REPORTEDLY CONSUMED ALCOHOL PRIOR TO DROWNING

PERSONAL FLOTATION DEVICES (PFDS)

Lifejackets or personal flotation devices (PFDS) have saved numerous lives over the years. An international study provided evidence to suggest wearing a lifejacket may potentially prevent one in two drowning deaths among recreational boaters (Cummings et al, 2011).

Unfortunately, not wearing a lifejacket has potentially claimed many lives in Victoria, with three out of four people who drowned in boating incidents not wearing a lifejacket at the time the incident occurred. In addition, the simple act of putting on a lifejacket when rock fishing could also have saved another 12 lives over the past decade, with all individuals who drowned while rock fishing not wearing a lifejacket.

Of all drowning deaths involving recreational boating or other activities where a lifejacket is required or recommended to be worn, such as rock fishing, 78% (50) of victims from 2002-2012 were reportedly not wearing one.

The role of the coroner in Victoria is to investigate certain deaths such as drowning, in order to determine the identity of the person who died, the cause of the death and, in some situations, the circumstances surrounding the death. As part of this process, the coroner may recommend ways to help prevent similar deaths in the future.

There were three drowning deaths where coronial recommendations were made in 2012/2013. The recommendations relate to home pool and spa safety as well as coastal aquatic safety signage. The following is a summary of each incident and the recommendations made by the coroner as contained in the coronial findings. Note, these are not exact replications from the findings; full details can be accessed from the Coroners Court of Victoria website:

2010

In January 2010, a toddler drowned in an in-ground swimming pool in the backyard of a rental property. Just prior to the drowning, the child was playing in the backyard of the home with three other siblings. The pool barrier was largely compliant with the requirements at the time, despite offering direct access to the pool to those in the backyard.

Recommendations

1. That Consumer Affairs Victoria seeks to amend its tenancy forms and publications available to tenants and landlords to include information about pool barrier fencing.

2. That the Building Commissioner and the Minister for Planning consider the contributing circumstances of this death, and determine whether amendments should be made to the existing swimming pool barrier requirements to reduce the risk of previously acceptable barrier configurations, particularly those which utilise self-closing doors, when properties are sold, or offered to lease.

2010

In April 2010, a toddler drowned in an outdoor spa in the backyard of a rental property. Just prior to the drowning, the child was playing around the home with her older sibling. A family friend arrived at the home and the child’s mother answered the door, a few minutes later she realised her daughter was missing and found her in the outdoor spa floating face down. There was no barrier fencing around the spa and no automatic locks on the access doors from the house.

Recommendations

1. That Consumer Affairs Victoria amend its tenancy forms and publications created for tenants and landlords to include regulatory information about pool barrier fencing.

2. That the Building Commissioner and the Minister for Planning consider the contributing circumstances of this death, and determine whether amendments should be made to the existing swimming pool barrier requirements to reduce the risk of previously acceptable barrier configurations, particularly those which utilise self-closing doors, when properties are sold, or offered to lease.

I support the recommendations of Life Saving Victoria.
Recoronsations Cont.

2012

In January 2012, a 36-year-old mother drowned when visiting Urquarts Bluff beach with her child, another adult and four other children. Urquarts Bluff is approximately 10km west of Anglesea and adjacent to the Great Ocean Road; the beach has no surf lifesaving club, and is not a patrolled beach. On this day there was a southwesterly wind which created difficult swimming conditions. The children were carried by a rip out of their depth, and both mothers then pursued them to assist. All were quickly swept away from the shore. Neither of the adults was a strong or experienced swimmer. The rescue response by Fairhaven and Anglesea surf life saving clubs, surfers, police, and ambulance, helped save the lives of the four children and one adult. Tragically despite these efforts the 36-year-old mother was unable to be saved.

Recommendations

1. The signs within the Great Ocean National Park have been the subject of internal review since approximately 2009/2010, which review is not yet completed. No recommendations are made other than the review and consultation process be complete as early as possible, and that any improvements that are agreed be effected promptly.

That relevant bodies, including but not confined to Life Saving Victoria, Parks Victoria, Surf Lifesaving Clubs, Surf Life Saving Australia and agencies associated with tourism and education, give consideration to introducing or expanding community education in respect of beach safety signage and information systems. Education, to create a habit that upon arrival at such a destination, especially for the first time, groups and individuals will consider relevant information and consider whether their intended activities for the day are appropriate at that location or not.

2. "EVERY DROWNING DEATH IS ONE TOO MANY. IT IS OUR MISSION TO PREVENT AQUATIC RELATED DEATH AND INJURY IN ALL VICTORIAN COMMUNITIES BY ONGOING ENGAGEMENT WITH INDUSTRY, GOVERNMENT AND THE COMMUNITY TO DEVELOP INNOVATIVE SOLUTIONS.”

Nigel Taylor
Chief Executive Officer, Life Saving Victoria